
High Robustness Requirements in a Common Criteria Protection Profile

Thuy D. Nguyen, Timothy E. Levin, Cynthia E. Irvine
Naval Postgraduate School, Monterey, California

tdnguyen(levin,irvine)@nps.edu

Abstract

The development of a Common Criteria protection
profile for high-robustness separation kernels requires
explicit modifications of several Common Criteria
requirements as well as extrapolation from existing
(e.g., medium robustness) guidance and decisions. The
draft U.S. Government Protection Profile for
Separation Kernels in Environments Requiring High
Robustness (SKPP) is intended to be applicable to a
class of products (the target of evaluation, or TOE)
that includes, but is not limited to, real time and
embedded systems. This paper describes certain SKPP
concepts and requirements and provides underlying
motivations and rationale for their inclusion in the
SKPP. Primary areas of focus are the security
requirements regarding information flow, dynamic
configuration, and the application of the principle of
least privilege to restrict actions of active entities.

Keywords: common criteria, separation kernel,
high robustness, dynamic configuration, least
privilege.

1. Introduction

In the U.S., there has been an increased interest in
the use of separation kernels to support real-time
embedded systems and virtual machine monitors. A
number of products are forthcoming and some of those
products will be used in environments requiring high
robustness. The effort to create the U.S. Government
Protection Profile for Separation Kernels in
Environments Requiring High Robustness (SKPP) was
started to respond to this need [1]. This protection
profile is based on CC Version 2.2 [2].

 Since both separation kernels and high robustness
are in an uncharted territory of the Common Criteria
(CC) landscape, development of a protection profile
for this class of products presented several challenges,
some of which were:

 Description of the TOE abstractions in the
Common Criteria context,

 Extensions to several Common Criteria
requirements, and

 Extrapolation from existing guidance and
protection profiles for medium robustness
environments [3, 4].

Since the initial release for public review in 2004,
the SKPP has been substantially revised and is pending
release. This paper describes the rationale for certain
concepts and requirements that first appeared in the
initial version as well as some that are new in the
current draft. The general characteristics of a
separation kernel and the specific instantiation of those
characteristics captured in the SKPP are presented.
This is followed by a discussion of some of the high
robustness issues currently being addressed for the
SKPP. A summary of the on-going transition to CC
Version 3.0 is also provided [5]. It is not an objective
of this paper to provide a comparative analysis of
separation kernel relative to other technologies, e.g.,
[6, 7, 8, 9, 10].

2. What is high robustness?

The Common Criteria is an internationally-

recognized standard for security evaluation of IT
products [2, 5]. In the CC framework, a Protection
Profile (PP) is a collection of implementation
independent security requirements for a class of target
products intended to undergo CC evaluation, i.e., a
Target of Evaluation (TOE) class. A Security Target
(ST), on the other hand, is a set of implementation-
specific security requirements for a particular TOE.

The CC defines six building blocks for a PP/ST:
TOE description, security environment description,
security objectives, security functional requirements,
security assurance requirements, and rationale
statements on the traceability mapping of the first five
building blocks. With respect to assurance, the CC
defines a seven-level assurance scale that measures,
through independent evaluation, the breadth, depth,
and rigor of the security properties of the target system.
The evaluation assurance levels (EAL) range from
EAL1 (lowest) to EAL7 (highest). Although the CC is
internationally accepted, only evaluations at EAL4 and

below are mutually recognized by the participating CC
members. Individual members structure CC
evaluations with what is called a “national scheme.”

In the U.S. scheme, robustness is a metric used to
measure the TOE’s ability to protect itself and its
resources. A PP must declare its degree of robustness
[3]. Robustness is defined in terms of the strength of
the TOE’s security mechanisms and its level of
assurance [11]. There are three levels of robustness:
high, medium, and basic. High robustness is defined as
“security services and mechanisms that provide the
most stringent protection and rigorous security
countermeasures.” [12] The need for robustness in a
TOE is a function of the value of the data that the TOE
protects and the threats identified for the environment
in which the TOE is employed. High robustness can
counter extremely sophisticated and well-funded
threats and therefore can be used to protect high-value
data [11].

3. Separation Kernel characteristics

John Rushby introduced the separation kernel

concept in 1981 [13] and subsequently discussed it in
terms of partitioning kernel in the context of avionics
systems [14]. Separation kernel concepts have also
been previously discussed with respect to security
evaluation [15] and implemented in commercial
systems, e.g., PR/SM [16].

Like other security kernels, a separation kernel
manages all resources under its control and can protect
itself so that it cannot be attacked. A separation kernel
divides all resources into partitions representing
different policy equivalence classes and controls the
interaction between partitions. Controlled interaction
means that the actions of a subject in one partition
cannot be detected or communicated to a subject in
another partition, unless the kernel has established an
explicit means for such communication.

Similar to a Type I virtual machine monitor [17], a
separation kernel achieves isolation of resources in
different partitions by virtualization of shared
resources, e.g. devices, memory, and the clock, such
that each partition is assigned as a set of resources that
appears to be entirely its own. The kernel also creates
the abstractions of resources in the form of abstract
data types that are exported at the kernel interface.

Another general characteristic is the way a
separation kernel manages the runtime resources.
Resources are the aggregate of hardware, software and
data that are either used for the implementation of the
kernel or exported at the kernel interface. Exported
resources include subjects, which are active entities
and other non-active entities such as memory, files,
devices, buffers, volumes, etc.

In addition to these general characteristics, the
SKPP requires other characteristics, discussed below.

3.1. Limited security functionality

A SKPP-conformant separation kernel will be

subjected to a high level of scrutiny during its
evaluation and validation cycles, and thus must be
minimized in complexity regarding functionality and
design. The core functionalities include the separation
and isolation of all resources, the control of
information flows between partitions and between
resources, the controlled sharing of selected resources,
and the management of security functions and audit
services. The limited nature of the security
functionality allows this type of separation kernels to
be used as the trusted foundation of a secure system or
as an embedded component within a larger system.

3.2. No runtime user interface

The SKPP is intended to be applicable to embedded

as well as other types of systems. For the former, the
kernel, once configured, operates autonomously
without human intervention. Hence, the SKPP defines
no functional requirements for identification and
authentication of users, administrative roles support,
and the allocation of administrative roles to security
management functions. Since there will be no
administrators to monitor and maintain the kernel
during runtime, additional assurance measures are
inherently required to ensure highly robust autonomous
execution of the security management functions. Note
that it is allowed for the ST author to specify additional
requirements for administrative roles in support of a
specific kernel implementation.

3.3. Static runtime configuration

In general, the runtime behavior of a separation
kernel is determined by its configuration data. The
configuration data specifies how resources are
allocated for both time and space, and what policy
rules are to be enforced. The SKPP supports both
static and dynamic configuration. With static
configuration, the configuration data is statically
defined and maintained during the runtime execution;
time and space resource allocations and policy rules
cannot be changed after the kernel is initialized.

Because of its simplicity, a completely static
separation kernel is ideal for research on the rapid
creation of evaluatable high assurance systems. If the
configuration does not change during runtime, the
kernel design and implementation can be relatively
simple and small, making it suitable for high
robustness evaluation. The fundamental security

service provided by a statically-configured separation
kernel is separation of the activities occurring in
different partitions. This enables the kernel to be used
as a trusted building block for more complex systems.

However, in some exigent scenarios (e.g., the
failure of a peripheral device in a mission critical
application), it may be desirable for the kernel to be
able to change its security configuration. Thus, the
SKPP allows the kernel to provide a capability to
change the current configuration during runtime to
another, pre-loaded, configuration. Configuration
change will be discussed further in Section 5.2.

3.4. Support privileged subjects

For highly robust security systems, the principle of
least privilege is a significant factor that, to date, has
not been explicitly addressed as a security functional
requirement in the Common Criteria. It is vaguely
implied in the ADV_INT assurance requirements [2],
which could be subject to unsound interpretation.
Least privilege prescribes restrictions to actions of
active entities including the internal modules and
technical measures that comprise the TOE security
functions, and the subjects (e.g., application programs)
in the TOE scope of control. In the SKPP, the
restriction is that these entities must not have any more
“privilege” (viz., access to resources) than is necessary
to perform the actions for which they were designed.
Exceptions to this requirement are allowed for certain
degenerate designs. How the principle of least
privilege is used in the SKPP is further discussed in
Section 5.

3.5. Generate audit records

The SKPP requires the kernel to detect a set of
auditable events and capture information that
characterizes each event in a form that can be
interpreted by an external review mechanism. The
kernel is not required to notify the operational
environment of the existence of the audit record or to
automatically export the information to the
environment.

4. SKPP Target of Evaluation overview

As shown in Figure 1, the TOE boundary

encompasses the following components:
 TOE Security Functions (TSF)
 Initialization mechanism
 Configuration mechanism
 Trusted delivery mechanism

The CC divides security requirements into two
categories, functional and assurance. The security

functional requirements are levied only on the TSF
while the security assurance requirements are imposed
on the entire TOE. The following sections discuss the
security requirements included in the current SKPP
working draft, which is based on CC Version 2.2.

4.1. Security functional requirements

The CC organizes security requirements in terms of

classes, families and components. The SKPP utilizes
six of the eleven CC-defined classes of security
functional requirements based on the security
objectives identified for the TOE and its environment.
Figure 2 summarizes the security functional
requirements included in the SKPP at the class and
family levels.

Except for two functional classes, Security Audit
and User Data Protection, the other four functional
classes include extended requirements are that not
contained in Part 2 of the CC. These extended
requirements are necessary because some of the
security objectives identified in the SKPP need
requirements that either do not exist in the CC or
cannot be directly mapped to the existing CC
requirements. In the Identification and Authentication
class, the requirements in the FIA_ATD and FIA_USB
families are modified to require that the configuration
data must specify the security attributes of resources,
and that the TSF binds these security attributes to
exported resources when the resources are created
during initialization.

In the Security Management class, the requirements
in the FMT_MOF, FMT_MSA, and FMT_MTD
families are modified to require the TSF to restrict
access to privileged operations to authorized subjects,
to assign authorizations to subjects as specified by the
configuration data, and to protect the integrity of the
configuration data at all times.

The Protection of the TSF class (FPT) includes five
new families and two modified families, FPT_FLS and
FPT_RCV. The new families contain requirements

Target of Evaluation

Trusted Delivery
Mechanism

Initialization Mechanism

TSF

Software

Configuration
Data

Hardware

Configuration Mechanism

Target of Evaluation

Trusted Delivery
Mechanism

Initialization Mechanism

TSF

Software

Configuration
Data

Hardware

Configuration Mechanism

Figure 1. TOE and TSF boundary

regarding the run-time configuration change capability,
establishment of secure state, application of the
principle of least privilege on TSF internal functions
and modules, secure halt, and secure restart. The
FPT_FLS and FPT_RCV requirements are modified to
explicitly define the requirements for preservation of
secure state and the TSF responses to security failures.

The last extended security functional requirement
belongs to a new family in the Resource Utilization
class. This requirement addresses the objective that
the TSF exhibits predictable utilization of both time
and space resources.

4.2. Security assurance requirements

The evaluation target of the SKPP-conformant TOE

is EAL6 augmented with a formal security policy
model and additional assurance requirements related to
development, flaw remediation and independent
testing. Having a formal model ensures that the
security policy implemented by the separation kernel is
sound and self-consistent.

Extended security assurance requirements are added
to the Development assurance class (ADV) to address
the security objectives for the soundness of the
architectural design of the TSF with in-depth analysis
of the FPT_SEP and FPT_RVM requirements, trusted
initialization, and trusted configuration data generation
and validation. Furthermore, the ADO_DEL family in
the Delivery and Operation assurance class is also
modified to require a delivery capability that uses
cryptographic services to protect the TOE against
modifications and masquerading attempts during the
TOE delivery to the users.

In the CC framework, security functional
requirements are levied on the TSF, not the TOE. To

achieve a high level of confidence that the TOE
initialization mechanism will correctly establish the
TSF in its initial secure state, we extended
requirements in the Development class to precisely
state both functional and assurance requirements for
the initialization mechanism. In addition to
establishing the initial secure state, the initialization
mechanism must also maintain the integrity of the TSF
during the initialization process and not interfere with
the TSF after the initialization process completes.

Similarly, it is important to levy both functional and
assurance requirements on the configuration data

generation and validation mechanism because the TSF
depends on the correctness of the configuration data to
establish the TOE security policy. This mechanism
must preserve the semantics of the configuration data
in both human and machine readable forms. Regarding
assurance requirements, it is also subjected to the same
level of analysis and testing as other non-TSF TOE
components.

5. SKPP high robustness issues

Notable among the challenges that have surfaced

during the development of the SKPP are the
application of the principle of least privilege to provide
a finer grained information flow control, dynamic
configuration change during run-time, and hardware
assurance. These issues are critical aspects of
assurance in a highly robust TOE.

5.1. Principle of least privilege

The traditional separation kernel approach only
addresses resource isolation and ignores the problems
relating to all-or-nothing security within an individual

FAU_ARP

FAU_GEN

FAU_SEL

FDP_IFC

FDP_IFF

FAU_RIP

FRU_RSAFIA_ATD

FIA_USB

FMT_MOF

FMT_MSA

FMT_MTD

FPT_AMT

FPT_FLS

FPT_RCV

FPT_RVM

FPT_SEP

FPT_STM

FPT_TST

User
Data Protection

Identification &
Authentication

Security
Management

Protection
Of TSF

Resource
Utilization

Security
Audit

Security Functional Requirements

FAU_ARP

FAU_GEN

FAU_SEL

FDP_IFC

FDP_IFF

FAU_RIP

FRU_RSAFIA_ATD

FIA_USB

FMT_MOF

FMT_MSA

FMT_MTDFMT_MTD

FPT_AMT

FPT_FLS

FPT_RCV

FPT_RVMFPT_RVM

FPT_SEPFPT_SEP

FPT_STMFPT_STM

FPT_TSTFPT_TST

User
Data Protection

User
Data Protection

Identification &
Authentication

Security
Management

Security
Management

Protection
Of TSF

Protection
Of TSF

Resource
Utilization
Resource
Utilization

Security
Audit

Security
Audit

Security Functional Requirements

Figure 2. Security functional requirements in SKPP

partition. Over-privileged programs are left for
application developers and evaluators to resolve. For
highly robust systems, all-or-nothing security is a
significant issue.

Saltzer and Schroeder concluded that least privilege
is a design principle that can limit the damages caused
by both programmatic and operational errors [18].
They defined least privilege as the restriction that
“every program and every user of the system should
operate using the least set of privileges necessary to
complete the job. Primarily, this principle limits the
damage that can result from an accident or error. It
also reduces the number of potential interactions
among privileged programs to the minimum for correct
operation, so that unintentional, unwanted, or improper
uses of privilege are less likely to occur.” In other
words, mechanisms and subjects should have no more
privilege than what is necessary to perform the actions
for which they were designed.

Several benefits accrue as a result of the application
of the principle of least privilege. First, should a
component become corrupted, the damage resulting
from its failure will be less pervasive. Second, because
the privileges afforded the component will be minimal
with respect to the overall policy, security analysis of
the component is less complex. Finally, if a system
cannot restrict individual users and programs to have
only the access authorizations that they require to
complete their functions, the accountability
mechanisms (e.g., audit) will likely be less able to
accurately discern the cause of various actions. Thus,
the ability of a secure system to realize the goals of

accountability and the confinement of damage will be
directly correlated with the level of granularity with
which the system is able to invoke the principle of least
privilege.

For the SKPP, the principle of least privilege is used
in two different contexts. Externally, it is used by the
TSF to restrict access by subjects to privileged
instructions and resources within a partition.
Internally, it is applied to the structure of the TSF to
restrict privileges of internal modules and functions.

As a consequence, a securely deployed system must
be capable of supporting least privilege, and must have
been administratively configured such that any
programs that might execute will be accorded access to
the minimal set of resources required to complete the
job. Hence, a high robustness system should be able to
apply least privilege at the same granularity as the
resource abstractions that it exports (e.g., individual
files and processes).

5.1.1 Least privilege for flow control

The SKPP defines three different TOE abstractions

based on the granularity with which subjects and
resources are exported by the TSF. This enables the
SKPP to support different use cases of information
flow control with varying granularity of control over
subject-resource interaction. The ST author is required
to select the abstraction that corresponds best to the
TSF.

The least privilege abstraction is the most fine-
grained use case. It requires the TSF to be capable of

Table 1. Authorization Matrix for the Least Privilege Abstraction [1]

Partition A
Resources

Partition B
Resources Partition C Resources

Pa
rt

iti
on

 A

R1 R2 R3 Pa
rt

iti
on

 B

R4 R5 R6 Pa
rt

iti
on

 C

R7 R8 R9 R10

Partition A RW R W
S1 RW R W - R - W - W -
S2 W RW R R - R W W - W

Partition
A

Subjects S3

R - RW

R R -

- W W -
Partition B - - -

- - - - - - - - - - -

- - - - - - - - - - -
Partition

B
Subjects -

- - -

- - -

- - - -

Partition C - RW R
S4 - - - RW R W R R - R
S5 - - - W RW - - R R R

Partition
C

Subjects S6

- - -

R W RW

R - - R

supporting multiple heterogeneous subjects and
resources in a partition and that to discern between
those subjects and resources for the purpose of
information flow control. Specifically, the TSF must
enforce the information flow control policy in terms of
both partition-to-partition flows and subject-to-
resource flows. The enforcement rules as paraphrased
from the FDP_IFC and FPD_IFF requirements are as
follows:

 TSF shall allow an operation of a subject on an

exported resource only if:
- The partition-to-partition flow rule explicitly

authorizes the operation and
- The subject-to-resource flow rule explicitly

authorizes the operation

A sample authorization matrix to illustrate the

SKPP least privilege abstraction is depicted in Table 1.
Ten exported resources are mapped to partitions, where
each exported resource can be allocated to one and
only one partition. Similarly, six resources are
individually mapped to one and only one partition. No
subjects have been mapped to Partition B. The access
authorizations of each subject to each resource appear
in the cells of the matrix. The authorizations of a set of
subjects that are mapped to the same partition can be
heterogeneous with respect to both resources in the
subjects’ own partition as well as to resources in other
partitions.

Since the SKPP is intended to be applicable to
different implementations, the FDP_IFC and FPD_IFF
requirements are structured to support two other use
cases where subject-resource interaction is “policy-
equivalent” to that of their partition (s).

The second use case is a degenerate configuration
where there is only one subject in the subject’s
partition and only one external resource in the
resource’s partition. The TSF effectively enforces
information flow rules at the granularity of the flows
between partitions. This constitutes the partition
abstraction.

In the last use case, the TSF supports multiple
subjects and resources in a partition. However, the
resource-access needs of all subjects of a given
partition are homogenous and so the TSF treats them
all equally with respect to their authorizations to access
the exported resources in a given “resource” partition.
As with the flow control policy, the TSF does not
discern between exported resources in a particular
partition. For this equivalence set abstraction, the
subject-to-resource flow rules are at the granularity of
the flows between and within partitions.

To make the equivalence set abstraction more
concrete, consider the following example of a system
with three partitions: PX, PY, and PZ. Each partition Pn

contains a set of resources Rn, and a distinct set of
subjects Sn. The sets may be empty. In the equivalence
set abstraction all subjects in a given partition Pn will
have the same authorizations, Anm to all resources in
another partition, Pm. (where m may equal n). For
example, for the resources in PY, all subjects in SX will
have the authorization AXY. Similarly for PZ, they will
have authorizations AXZ. For the subjects associated
with PZ, there will be similar sets of authorizations.
The access matrix for this arrangement is shown in
Table 2.

Table 2. Authorization Matrix for the
Equivalence Set Abstraction

 Partition Resources
 RX RY RZ

PX
SX AXX AXY AXZ

PY
- - - -

Pa
rti

tio
n

Su
bj

ec
ts

PZ
SZ AZX AZY AZZ

5.1.2 Least privilege for architectural

assurance

Although legacy evaluation criteria imposed
assurance requirements regarding the application of the
principle of least privilege to restrict the actions of
internal modules and functions [19], the CC lacks such
explicit requirements. When applied to the design and
internal structure of the TSF, least privilege can aid
reasoning about the assurance properties of the system.
Placing limits on the privileges that a module can have
helps reduce the complexity of the implementation.
Layering, minimization, and least privilege, when used
in combination, enable a greater degree of scrutiny,
which will increase the confidence in the analysis of
the correctness of the TSF. These concepts are closely
tied to, but conceptually different from, the notions of
modularity and encapsulation [20].

In the SKPP, both functional and assurance
requirements are extended to require developers to
apply the principle of least privilege to all TSF (i.e.,
internal) modules and functions. An element is added
to the FPT class that limits internal functions and
modules of the TSF to minimal scope and accessibility
to resources. A parallel element is added to ADV_INT
to address the related assurance requirements.

5.2. Dynamic configuration

To support special cases where it is desirable for the
TOE to be able to change its configuration (e.g., the
occurrence of overriding environmental security
conditions), the SKPP allows the TOE to change
resource allocations and policy rules during runtime.
Dynamicity and complexity go hand-in-hand and there
are problems associated with dynamic configuration
that the TOE developers and evaluators must address.

First, the necessity to provide a coherent security
policy, as reflected in the model, is always an issue for
secure systems. Arbitrary changes to the configuration
data are hard to understand with respect to policy since
any changes would have to be evaluated against the
policy to make sure they are still correct. This
represents more work, more complexity, and more
opportunity for errors. With dynamic reconfiguration
of the security policy itself, unless done very
conservatively, the analysis of the policy and model
may be very difficult – for example, ensuring that
secure state is maintained across a policy transition,
and that the changes do not cause undefined
combinations of policies after the transition. The
difficulty of analyzing arbitrary policy mechanisms is
known to present an undecidable problem [21]. For
the SKPP, the vendor must convince evaluators of the
adequacy of their solution.

The SKPP approach to dynamicity is to limit how
the policy may change by defining the following
hierarchy of configuration changes that a TOE can
provide during runtime [22]:

 Static configuration change
 Constrained dynamic configuration change
 Unconstrained dynamic configuration change

Runtime configuration change capabilities are
optional. The characteristics and assurance issues of
each capability is discussed in the following sections.

It is important to note that a conformant kernel must
provide the capability to change the TOE configuration
while the TOE is offline. This requires the TOE to
access a vector of configuration attributes when it
initializes. This configuration change capability allows
for a complete removal of previous security state as
well as pre-analysis of subsequent security policies.
The assurance issue associated with this capability is to
ensure that each configuration used represents the
intended organizational security policy and operational
conditions.

5.2.1 Static configuration change

This capability is the most basic form of dynamicity
— it requires the TOE to be able to load multiple
configuration vectors at initialization, one of which
will define the current or operational configuration
after the completion of initialization. The TSF must
also provide a mechanism for an authorized subject to

select the next vector. i.e., the one that will become
operational when the TOE is next initialized.

Alternatively, the TSF may provide a mechanism
for the transition from current to next configuration to
take effect during runtime, i.e., without reinitialization.
The TSF must restrict to authorized subjects the ability
to select the next configuration and to cause the
configuration transition.

This capability requires the TOE to properly
execute the requested configuration change as
specified by the authorized subject. When a runtime
change is invoked, the TSF has the additional
requirement to continuously maintain secure state
before, during and after the configuration change.
These concerns are in addition to the assurance issue
associated with the offline configuration change
capability. Other security characteristics such as those
relating to covert channels must also be preserved
during and after the configuration change.

5.2.2 Constrained dynamic configuration

change

This capability allows ad hoc runtime configuration

changes that are constrained by static rules defined
either in the configuration data or in the TSF itself.
Depending on the comprehensiveness of the rules (i.e.,
the range of allowed changes), the authorized subject
that performs these changes may be an extension of the
TSF because is shares the responsibility to properly
enforce the policy.

The additional assurance requirement associated
with this option is to ensure that the constraints and the
ad hoc policy change requests are consistent with the
organizational security policy. Furthermore, the level
of trustworthiness of the authorized subject that is
allowed to invoke this capability must be
commensurate with the level of trustworthiness vetted
in the TSF.

5.2.3 Unconstrained dynamic configuration

change

This capability affords an authorized subject the

flexibility to arbitrarily change any and all aspects of
the current configuration. Unlike the constrained
dynamic configuration change, this capability has no
constraints. The lack of constraints exacerbates the
difficulty in the preservation of secure state before,
during, and after the configuration change, and
indicates that the authorized subject is an extension of
the TSF. Hence, the additional assurance challenge
associated with this capability is to provide a
convincing definition of “secure transition” in the
security policy model.

Since a configuration change potentially alters the
security policy of the system, the formal security
policy model must represent the change from one
policy to the next, and the model proof must show that
this transition preserves security. The chain of
evaluation evidence linking the system implementation
to the model will then ensure that the system preserves
security during the configuration change.

Given the issues related to dynamic configuration
discussed previously, the moderate and full dynamic
configuration change capabilities are considered
beyond the scope of the SKPP and will require a ST-
based rather than a PP-based evaluation. In this case,
the ST must define the functional and assurance
requirements for the supported capability, and justify
that the core security objectives including the ability to
transition to a secure state without being compromised
are continuously satisfied during the course of the
configuration change.

5.3. Hardware assurance

Since the time of the Trusted Computer System

Evaluation Criteria [19], it has been generally
understood that, for high robustness, hardware must be
considered as part of the TSF. Karger and Kurth had
argued that, for high assurance composite evaluation,
the ETR-lite concept vetted by the European CC
certification agencies is not adequate and that
additional information sharing among the hardware
developers, software developers, and the various
evaluators is critical to the success of a high assurance
evaluation [23].

A hindrance to hardware verification is the fact that
the hardware vendors do not generally share design
documents with their customers, due to proprietary
concerns. Thus it is difficult for TOE vendors to
produce detailed design and assurance documentation
regarding TOE hardware components. Were those
documents available, given the abilities of modern
hardware design tools (e.g., to organize and document
a layered, modular design), many, if not all, high
robustness ASRs could be applied in the evaluation of
TSF hardware components [24].

The threat of targeted hardware subversion has been
a long-standing concern in the development of highly
secure systems [25]. In particular, once a given
hardware component for the TOE has been selected,
this threat, can, in the current environment, be
addressed through a requirement to never upgrade
hardware (or development tools, for that matter) after
the initial TOE design. Such a requirement would be
prohibitively expensive.

Descriptions of the TSF’s dependencies on the
hardware and how the hardware security mechanisms
are used correctly in the security architecture of the

TSF, is probably the best possible approach in this era.
These descriptions should be at a level of detail and
rigor that is consistent with the TOE’s evaluation level.

In the current version of the SKPP, hardware
assurance is still unresolved although we have
proposed a set of assurance requirements that is under
review by the funding organization. The new
composition class, ACO, in CC Version 3.0 was used
as a model for these proposed requirements.

6. CC Version 3.0 transition issues

The SKPP was developed based on CC Version 2.2.

A preliminary effort to transition the SKPP to CC
Version 3.0 was conducted. Hardware assurance is
still not addressed in the new version. Some of the
other more notable challenges are discussed here.

6.1.1 Information flow policy enforcement

We found that CC Version 3.0 is significantly

different, but from our initial investigation, the
FDP_ACC requirements in Version 3.0 appears to be
simpler to use than the combined FDP_IFC and
FDP_IFF classes with respect to expressing
information flows rules. In FDP_ACC, the three
classes can be presented more simply. This
straightforward construction can make the
requirements more understandable.

6.1.2 Security attributes binding

The SKPP requires the binding of security attributes
to exported resources when the resource is created.

The current thought is to define a two-step process.
Registration allows the kernel to use the configuration
data to determine the attributes of the exported
resources that exist during runtime and to keep track of
that information in the kernel data structure. The
binding of the security attributes obtained during
registration takes place during the Initialization step.
This is when the exported resource is actually created.
The FIA_URE and FDP_ISA families are being
considered for this approach. However, more
investigation is still needed in this area.

6.1.3 Covert channel analysis by evaluators

In CC Version 3.0, covert channel analysis is

handled rather obliquely, although the TOE developer
is required to conduct the CCA via ADV and ATE
with respect to the unobservability functional
requirement. Since the functional requirement says, in
essence, that there will be no covert channels, it
follows that the ADV and ATE will ensure that that is

the case, amounting to “covert channel analysis,” with
the participation of both the vendor and the evaluators.
Unfortunately, the lack of explicit wording could lead
to a variety of interpretations and consequent confusion
regarding the responsibility for CCA.

These issues should be addressed in subsequent
versions of the CC.

7. Future work and conclusion

Robustness is “a characterization of the strength of
a security function, mechanism, service or solution,
and the assurance (or confidence) that it is
implemented and functioning correctly.” [12] High
robustness provides the highest level of confidence in
the implementation of security services and
mechanisms. The creation of a protection profile based
on the Common Criteria that addresses high robustness
issues is uncharted territory. Although the Common
Criteria provides a framework for describing very
rigorous requirements at its highest evaluation
assurance levels, we found that several extensions were
imposed by the need to articulate high robustness for a
separation kernel. Additionally, several new
requirements were identified, including those for both
external and internal least privilege, and dynamic
configuration. For the former, the TSF must be able to
restrict access by subjects to privileged instructions and
resources within a partition. In the case of the latter,
least privilege is applied to the structure of the TSF
itself, restricting privileges of internal modules and
functions.

The protection profile contains a set of
configuration change requirements ranging from
manual reconfiguration to a highly dynamic option.
That range is paralleled by increasing complexity of
the TSF and may motivate innovative assurance
arguments.

Acknowledgements

We would like to express our appreciation to the
entire SKPP authoring and management teams for their
support of the SKPP effort and especially Michael
McEvilley for his technical insights.

References

[1] U.S. Government Protection Profile for Separation
Kernels in Environments Requiring High Robustness,
Version 0.621, National Security Agency, 1 July 2004.

[2] Common Criteria for Information Technology Security
Evaluation, Version 2.2, CCIMB-2004-01-[001, 002, 003],

Common Criteria Project Sponsoring Organizations, January
2004.

[3] Consistency Instruction Manual For Development of US
Government Protection Profiles For Use in Medium
Robustness Environments, Release 3.0, National Security
Agency, 1 February 2005.

[4] U.S. Government Protection Profile for Multilevel
Operating Systems in Environment Requiring Medium
Robustness, Version 1.68, National Security Agency, 09
February 2004.

[5] Common Criteria for Information Technology Security
Evaluation, Version 3.0 Revision 2, CCIMB-2005-07-[001,
002, 003], Common Criteria Project Sponsoring
Organizations, June 2005.

[6] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris,
T., Ho, A., Neugebauer, R., Pratt, I. and Warfield, A., “Xen
and the art of virtualization,” Proceedings of the 20th ACM
Symposium on Operating System Principles, October 2003,
pp. 164–177.

[7] Schell, R.R., Tao, T.F. and Heckman M., “Designing the
GEMSOS Security Kernel for Security and Performance,”
Proceedings of the 8th National Computer Security
Conference, 30 September - 3 October 1985, pp. 108-109.

[8] Shockley, W.R., Tao, T.F. and Thompson, M.F., “An
Overview of the GEMSOS Class A1 Technology and
Application Experience,” Proceedings of the 11th National
Computer Security Conference, October 1988, pp. 238-245.

[9] Schellhorn, G., Reif, W., Schairer, A., Karger, P., Austel,
V. and Toll D., “Verification of a Formal Security Model for
Multiapplicative Smart Cards,” 6th European Symposium on
Research in Computer Security (ESORICS 2000), October
2000, Lecture Notes in Computer Science, vol. 1895,
Springer-Verlag, pp. 17-36.

[10] Bugnion, E., Devine, S., Govil, K. and Rosenblum, M.,
“Disco: Running commodity operating systems on scaleable
multiprocessors,” ACM Transactions on Computer Systems,
vol. 15, November 1997, pp. 412–447.

[11] Information Assurance Technical Framework, Chapter
4, Release 3.1, National Security Agency, September 2002.

[12] Department of Defense Instruction, Number 8500.2,
February 6, 2003.

[13] Rushby. J., “Design And Verification Of Secure
Systems,” Operating Systems Review, 15(5), 1981.

[14] Rushby, J., “Partitioning in Avionics Architectures:
Requirements, Mechanisms, and Assurance,” Technical
Report, Computer Science Laboratory, SRI International,
March 1999.

[15] A Proposed Interpretation of the TCSEC for Virtual
Machine Monitor Architectures, Vol. 1: Strict Separation,

Draft of 1 May 1990, Trusted Information Systems, Inc.,
Glenwood, MD.

[16] Certification Report for Processor Resource/ System
Manager (PR/SM) for the IBM eServer zSeries 900, SIDSZ-
CC-0179-2003, 27 February 2003, Bundesamt für Sicherheit
in der Informationstechnik: Bonn, Germany.
http://www.commoncriteriaportal.org/public/files/epfiles/017
9a.pdf

[17] Goldberg, R., “Architectural Principles for Virtual
Computer Systems,” Ph.D. dissertation, Harvard University,
Cambridge, MA, 1972.

[18] Saltzer, J. H., and Schroeder, M. D., “The Protection of
Information in Operating Systems,” Proceedings of the IEEE,
vol. 63, no. 9, September, 1975, pp. 1278-1308.

[19] Department of Defense Trusted Computer System
Evaluation Criteria, DoD 5200.28-STD, National Computer
Security Center, December 1985.

[20] Parnas, D. L., “On the criteria to be used in
decomposing systems into modules,” Communications of the
ACM, 15(12):1053–1058, 1972.

[21] Harrison, M., Ruzzo, W. and Ullman, J., “On Protection
in Operating Systems,” Communications of the ACM, vol.
19, no. 8, August 1976, pp. 461-471.

[22] McEvilley, M., Private communication, November
2005.

[23] Karger, P. A. and Kurth, H., “Increased Information
Flow Needs for High-Assurance Composite Evaluations,”
Proceedings of the Second IEEE International Information
Assurance Workshop, April 2004, pp. 129-140.

[24] Schell, R. R., Private communication, November 2005.

[25] Karger, P. A. and Schell, R. R. “Multics security
evaluation: Vulnerability analysis,” Tech. Rep. ESD-TR-74-
193, Vol. II, Information Systems Technology Application
Office Deputy for Command and Management Systems
Electronic Systems Division (AFSC), Hanscom AFB,
Bedford, MA 01730, 1974.

